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Abstract—Image-to-image translation is a long-established and
a difficult problem in computer vision. In this paper we propose
an adversarial based model for image-to-image translation. The
regular deep neural-network based methods perform the task
of image-to-image translation by comparing gram matrices and
using image segmentation which requires human intervention.
Our generative adversarial network based model works on a
conditional probability approach. This approach makes the image
translation independent of any local, global and content or style
features. In our approach we use a bidirectional reconstruction
model appended with the affine transform factor that helps in
conserving the content and photorealism as compared to other
models. The advantage of using such an approach is that the
image-to-image translation is semi-supervised, independant of
image segmentation and inherits the properties of generative ad-
versarial networks tending to produce realistic. This method has
proven to produce better results than Multimodal Unsupervised
Image-to-image translation.

Index Terms—GANs, image-to-image translation, style transfer

I. INTRODUCTION

Image-to-image transfer has established itself as an impor-
tant domain in computer vision since the first paper published
by Gatys et al. [1]. Also known as Neural Style Transfer, it
has had many variations over the years, image colorization
[14], style transfer [1], image-to-image transfer [3] and so
on. For which generally deep neural networks have been used
with architectural variances. For instance, we can make a day
time image (also known as the content image) of a city look
like a night time image by selecting the appropriate style
(reference) image. Likewise we can have diverse types of
features transfered from one image to another which include
time, color, seasonal translations as well.

Image-to-image translation is the process of translating
one image onto another while preserving the content and
photorealism of the original content image. Deep-learning
techniques have proved excellent in faithful and photorealistic
style translation [1]-[3], [7]. Our approach is built upon
the idea of generative adversarial networks introduced by
Goodfelow et al. [8]. The underlying concept of such a neural
network architecture is that a GAN consists of a generator
and a discriminator. The discriminator is trained to identify
real images while the generator tries to fool the discriminator
by creating counterfiet images from noise and passes them on
to the discriminator. Which then returns a verdict on how close
the counterfiet images are to a real one. Based on this feedback
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the generator improves itself and creates another image and the
cycle repeats.

Here in our paper we make use of an improvised GAN
architecture appended with an Affine Loss factor calculated
from a Matting Laplacian matrix [6] in the final loss function.
This additionl factor helps in maintaining spatial integrity and
preserve photorealism in the content image. Since generative
adversarial networks create images from noise they are prone
to distortions and noisy images but provide with the biggest
advantage, they do not form the basis of simple color and
style mapping. They recreate the content image with the style
variations.

II. RELATED WORK

Image-to-image style transfer has reached state-of-the-art
[2], [3], [7] results. The current existing algorithms work in
either of the two broadly divided classes: local translation and
global translation. But neither of the algorithms excel in both
photorealism and faithful style translation at the same time and
for all test cases. One or the other factor gets compromised.
Global stylization methods work by matching statistical factors
of the pixel values [11] whereas local stylization is achieved
by algorithms that find close and consistent relations between
pixel values of the content and style images. Another classifi-
cation is based on the algorithm’s ability to translate low-level
and (or) high-level features. Low-level features translation
involves preservation of the intricacies in the content image
while modifying the color or position with respect to the style
image. Whereas high-level feature translation is the mapping
of broader features which by example means day to night,
summer to winter translations.

The best works proposed by Luan et al. [2] and Li et al.
[7] are based on the paradigm of matching the gram matrices
and makes use of semantic segmentaions of the content and
style images. Which take in only the content and style images
as the inputs for the network. These algorithms perform post-
processing like affine smoothing techniques thereby drastically
improving the quality of the resultant images. Such methodolo-
gies make use of segmented images derived from the content
and style images and then perform style translations from
one segment to another by comparing the gram matrices of
the input images. Other such algorithms based on a similar
paradigm are proposed by Gatys et al. [1], Huang et al. [2]
and many others, [1], [7], [12].



Promising results have been showcased by various GAN
architectures namely Pix2pix by Isola et al. [13], Unsupervised
Image-to-image Translation by Liu et al. [4], CycleGAN
and BicycleGAn by Zhu et al. [5]. All of which take in a
dataset consisting of multiple images similar to the content
and the style domain. Multimodal Unsupervised Image-to-
Image Translation by Huang et al. [3] provides an approach
to the problem by narrowing down the content domain to only
one image and a number of style images which constitute the
style latent code [3]. They have proposed that to make the
translation unsupervised the syle images are decomposd into
a common style latent space. The content space is sampled
from this style space based on a conditional distribution to
perfom the translation.

In our proposal we narrow down our method to one content
and one style image which does not make it completely
unsupervised as there is only one target style image. We use
the same architecture as proposed by Huang et al. [3] with
an additional affine loss factor added to the loss function
which adds to the smoothness and faithful style transfer which
are combined with the properties of generative adversarial
networks.

III. METHODOLOGY

In addition to the model proposed by Huang et al. [3]
we add the local affine transfrom L,, also known as the
photorealism factor of the content image calculated from the
Matting Laplacian matrix proposed by Levin et al. [6].

A. Assumptions

All assumptions are exactly the same as that made in the
paper Multimodal Unsupervised Image-to-Image Translation
by Huang et al. [3] which are as follows. The model assumes
that the content and style images are composed of distinct
image spaces x; € X; where z; is the ith image and A&j is
its corresponding image space. Here our goal is to estimate
the conditional distributions p(z1|z2) and p(x2|z;) leading to
the learned translation models p(z1—,2|x2) and p(ze—1|x1)
respectively given that p(z1) and p(ze) are the marginal
distributions of x; and x5 respectively.

We make another assumption that z; € AX; is composed
of a content latent space ¢ € C and a style latent space
s; € &, corresponding to every image from the dataset.
Thus two images (z1,x2) are generated from the individual
generators by 21 = G7(c, s2) and x2 = G3(c, s1). G and G5
are generator functions with E; and EZ being their inverse
encoders where Ef = (G1)~! and Ej = (G%)~'. Hence our
aim is to train the encoder and generator functions using neural
networks.

B. Matting Laplacian

Image matting is the process of extracting the foreground
and the background from an image with minimal possible user
intervention. The Matting Laplacian [6] process produces an
alpha matte which is the segmented image with the foreground
object in white and the background in black or vice versa as

per the requirements. Using this matting laplacian matrix we
calculate the local affine transform factor £,, also known as
the photorealism factor.

3
Ly = VO] M;V[O] )
c=1

It is a summation of the affine losses of all the three channels
of the image. M is the least-squares penalty function that is
dependant on the input image I. The dimensions of the M
matrix are (N X N) and V.[O] is the vectorized format of the
input image O in the channel ¢ having dimensions (N X I).
Thus this factor proves crucial in preserving the photorealism
and the content image in our proposal.
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Fig. 1. The above given images are the representations of how the self domain
reconstruction of our model works. The images x1 and xg are encoded into
their respective content and style latent codes c; and s;. The reconstructed
images x1’ and x2’ are not equal to their corresponding input imags because
of L1 loss.

C. Model

Our model given in figure 3 constitutes an encoder and a
decoder E and G respctively for every domain A}, in our
case ¢ = 1, 2. The encoder is factorized from the content and
style latent codes c¢; and s;.

(ciysi) = (B (1), B} (i) = Ei(:) (2)

Thus for image-to-image translation we interchange the
encoders and decoders i.e. for translation x1__,o we make use
of the content code ¢; = E§(x;) and a randomly drawn style
latent code from sy. Subsequently we use the decoder G2 to
generate the image.

12 = Ga(c1, $2) 3)

The loss function is composed of two factors, the bidi-
rectional reconstruction loss and the adversarial loss. The
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Fig. 2. This image represents the cross-domain translation of xj__,o and
x2—1. The **’ represents the Gaussian prior. We encounter £1 losses when
reconstructing images from s; to s;’ and c¢; to ¢;’ thereby fulfilling the
bidirectional reconstruction properties of our model. GAN loss is encountered
when the translation of 1 — 2,1 and z2 — x1—2 takes place.

bidirectional reconstruction loss is added to make sure that
there is a two way reconstruction of images in the directions,
image — latent — image and latent — image — latent.
The image reconstruction loss is computed as the difference
between the image reconstructed from the latent spaces c;
and s; of image x; and the image x; which is given by (it is
similar to £¥2, . for the image x2):

= Epymp(a) [[|G1(E1(21)) — 21[1] “4)

£Zfécon
The latent reconstruction loss £ZL . is the difference between
the content encoding of the generated image G2(c1,s2) and
the content encoding c¢; of the image x; and L£;2_ ., is the
difference between the style encoding of the generated image
G2(c1, 82) and the style encoding s, of the image x5 they are

given by the equations (which are similar for and £, ,.):
L

recon — ]Ec1~p(cl),sz~p(82)[”Eg(G?(Clv 32)) - Cl||1] (5)
Lrtcon = Eeymp(er),samp(sn) [1E3(Ga(c1, 52)) = s2[l1]  (6)

recon

Here ¢(s2) is defined as the prior A/(0, I) and p(cy) is defined
as ¢y = E$(x1) where z1 ~ p(x1).

Since we use a GAN framework we encounter an adversarial
loss which is supposed to be minimised so that the generated
images are as identical as possible to the original images. This
loss is given by:

Gan = Ecimp(er),sa~p(s) [10g(1 — Da(Ga(c1, s2)))]+

N
B, np(@s) [log D2 (22)]

Here D, is the discriminator function that distinguishes be-
tween the real image x; and the translated images. The
discriminator function D; and loss EE?AN are defined in a
similar way.

As mentioned earlier the architecture we use is essentially
the same as that was proposed by Huang et al. [3]. The
only difference being that in our approach we use only
one style image and add the affine transform loss in the
overall loss function. We assume [2] that the input images are
photorealistic and we do not have to lose this property. Thus
we penalize the loss fuction with the photorealism factor so as
not to lose this property while minimizing the reconstruction
losses from the image, content and style latent spaces. The
overall loss fuction proposed by us is given by:

min max E(El,EQ,Gl,GQ,Dl,DQ) =
E1,E2,G1,G2D1,D>
QCCJIAN + ‘Cz2AN + AZD (‘Cfécon + ‘Cfgcon)_F (8)
)‘C(ﬁiécon + K?econ) + AS(Eiécon + Eizcon)—’_
ALy + L33

Where \;, ¢, A\s are the weights that control the reconstruc-
tion, and \ 4 is the photorealism regularization weight [2].

D. Analysis

Our goal is to minimize the loss function defined in equation
(8). This minima is the optimal state of of our model and at
this point the following states are achieved:

p(e1) = p(ca) 9)
p(s1) = q(s1) (10)
p(s2) = q(s2) 1D
p(x1,21—2) +p(c1) = p(w2—1,22) +p(c2)  (12)

The equation (12) is different from the one proposed by Huang
et al. [3] because our model adds the local affine loss of
the content images. Our model is constructed in such a way
that when x; is the content image xo is taken as the style
image and vice versa. Which is why the local affine loss
of both the images is taken into consideration in equation
(8) and also the content marginal distributions are added and
taken into account when comparing the joint distributions
p(x1,21——2) and p(ra—1,22)1. At this state the content
marginal distributions p(c;) and p(cz) also become equal. Also
at this optimal state the style marginal distributions p(s;) are
equal to their prior distributions ¢(s;). The fact that we use
one one-to-one image mapping makes our process sound like
it follows the supervised learning paradigm, but it does not.
Even though we have only one image in the content and style
domain the images are encoded into a content and style latent
space and translated on the basis of conditional probability.
Thus our method is free from any deterministic translations as
performed by the methods [1], [2], [7], [12], [14] which make
use of image segmentation that helps in mapping regions of
interest in both the content and style images.
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Fig. 3. The auto-encoder architecture. It consists of a content encoder, style encoder and a decoder. The content encoder comprises of three convolutional
blocks which perform downsampling, followed by four residual blocks. The style encoder comprises of five convolutional layers followed by a global average
pooling layer followed by a fully connected layer at the end. The decoder makes use of a multi-layer perceptron that generates AdaIN [15] parameters from
the style code. The content code along with AdaIN parameters is processed by four residual blocks. The output of the residual blocks is passed on to three
upsampling layers that generate the final image.
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Fig. 4. First two images in each row i.e. [4a and 4b], [4g and 4h] and [4m and 4n] are the constituent datasets. Image 4c and 4i and 4o are the results
obtained from Multimodal Unsupervised Image-to-image Translation [3] with 4a, 4g and 4m as the content images respectively and 4b, 4h and 4n as the
style images respectively. While 4d, 4j and 4p are the results produced by the same method with 4b, 4h and 4n as the content images respectively and 4a,
4g and 4m as the style images respectively. Image 4e is our result with 4a as the content image and 4b as the style image. Image 4f is our result with 4b as
the content image and 4a as the style image. Image 4k is our result with 4g as the content image and 4h as the style image. Image 41 is our result with 4h
as the content image and 4g as the style image. Image 4q is our result with 4m as the content image and 4n as the style image. Image 4r is our result with
4n as the content image and 4m as the style image.



IV. IMPLEMENTATION DETAILS

We have adapted the publicly available pytorch implementa-
tion of Multimodal Unsupervised Image-to-image Translation
[3]. The architecture consists of an auto-encoder (generator)
and a discriminator. The auto-encoder comprises of a separate
content and style encoder and a combined decoder. The auto-
encoder architecture consists of the following layers:

« The content encoder whose content makes up the content
latent space (in the listed order):

7 x 7 convolutional block with stride 1 and 64 filters.

— 4 x 4 convolutional block with stride 2 and 128
filters.

— 4 x 4 convolutional block with stride 2 and 256

filters.

4 residual blocks each consisting of two 3 x 3

convolutional blocks with 256 filters.

« The style encoder whose output is added to the style latent
space (in the listed order):

— 7 x 7 convolutional block with stride 1 and 64 filters.

— 4 x 4 convolutional block with stride 2 and 128
filters.

— 3 4 x 4 convolutional block with stride 2 and 256

filters.

Global average pooling layer.

Fully connected layer with 8 filters.

o The decoder which reconstructs an image from the con-
tent and style latent code (in the listed order):

4 residual blocks each consisting of two 3 x 3
convolutional blocks with 256 filters.

2 x 2 nearest-neighbour upsampling layer followed
by a5 x 5 convolutional layer with stride 1 and 128
filters.

2 x 2 nearest-neighbour upsampling layer followed
by a 5 X 5 convolutional layer with stride 1 and 64
filters.

— 7 x 7 convolutional block with stride 1 and 3 filters.

The discriminator used is a multi-scale discriminator proposed
by Wang et al. [9] which makes use of the LSGAN objective
function proposed by Mao et al. [10]. This helps to pilot
the generator towards producing realistic and perfom effec-
tive translation while preserving the content. The architecture
consists of the following layers in the listed order:

e 4 x 4 convolutional block with stride 2 and 64 filters.

e 4 x 4 convolutional block with stride 2 and 128 filters.
e 4 x 4 convolutional block with stride 2 and 256 filters.
e 4 x 4 convolutional block with stride 2 and 512 filters.

We use the python implementation to compute the Matting
Laplacian matrix [16] from the tensorflow implementation of
Deep Photo Style Transfer [2]. The image, content and style
reconstruction weights and the photorealism regularization
weight are experimentally set to A\, = 10, A\, =1, Ay = 1 and
Aa = 10* [2] respectively. Our implementation is available on
https : //github.com/ozamanan/semisit.

V. RESULTS

Our dataset is composed of only two 3 channel images
with resolution 256 x 256. Thus we use a batch size of
1. Furthermore for every iteration both the images from the
dataset are used once to train the respective parts of the
network. At once when one image is used as the content
image the other one is used as the style image and vice versa
thereby completing the bidirectional reconstruction process.
All images used for experimental purposes are taken from the
implementation of Deep Photo Style Transfer [2].

The images fig. 4e, 4f, 4k, 41, 4q and 4r shown in fig. 4 are
the results generated from our code whereas the images 4c,
4d, 4i, 4j, 40 and 4p are the results generated using the code
of Huang et al. [3]. The results shown by us are the optimal
results beyond which the images tend to converge to their
respective style images. The optimal solution is the one where
the resultant image holds the properties of both the content and
style images while still being recognised by the discriminator
as a constituent image of the dataset. This optimal state is
mentioned in eq. (12).

This optimal state clearly shows an improvement in content
preservation and image smoothness over the proposal of
Huang et al. [3]. It is achieved due to the addition of the
affine transform factors £¥! and L72>. Thus our proposed
methodology generates results that are better in comparison
to the results from the method used by Huang et al. [3].

VI. CONCLUSION

We have proposed an architecture that performs the task of
unsupervised image-to-image translation with better accuracy
and results. The future work includes reducing the noise and
making the results more accurate even for low resolutions.
Another future scope lies in broadening this architecture for
the generation of music, text and videos.
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